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A B S T R A C T

Differentiating thermally modified wood types based on appearance alone is challenging. The primary objective 
of this study was to accurately identify and rapidly differentiate various commercial thermally-modified Scots 
pine wood products using an olfactory machine, in order to avoid profiteering and fraud in the trade. For this 
purpose, ThermoWood® (Thermo-D class), oil-heat treated wood (OHT) and Termovuoto® were used. The 
machine utilized for this study was outfitted with six metal oxide semiconductor (MOS) sensors classified as 
electrochemical sensors. Data analysis using principal component analysis (PCA) and linear discriminant analysis 
(LDA) demonstrated that the olfactory machine could differentiate thermally modified wood products from 
untreated wood with 100 % accuracy. Furthermore, the system effectively distinguished among the modified 
woods despite some overlap between ThermoWood® and Termovuoto®. The findings highlight the olfactory 
machine’s effectiveness in replacing traditional methods and in identifying thermally modified wood products, 
providing a quick and reliable tool for the wood industry to combat fraud and ensure product authenticity.

1. Introduction

Thermal modification of wood as an environmentally friendly pro-
cess, which is typically performed in an oxygen-controlled environment 
at temperatures ranging from 160 ◦C to 220 ◦C alters the physical, 
chemical, and mechanical properties of wood [1]. It generally leads to 
an increase in dimensional stability and durability, while often reducing 
mechanical strength [1,2]. There are various commercial processes like 
ThermoWood®, oil-heat treated wood (OHT), and Termovuoto®, which 
are mainly different in their processing methods, conditions, properties 
and intended application. The OHT process which was developed in 
Germany around 2000, typically uses vegetable oils as a heat transfer 
medium in a closed vessel [3]. The ThermoWood® process developed in 

the 1990s in Finland generally involves heating wood at high temper-
atures in the presence of steam. The Thermovuoto® process was 
developed more recently as an EU-Eco-Innovation initiative project by 
the National Research Council of Italy and the Swedish University of 
Agricultural Sciences (SLU) [4]. This approach, also known as the 
thermo-vacuum process, uses forced airflow to produce heating and a 
partial vacuum to replace the oxygen in the reactor [5]. According to 
Hill (2006), the continuous operation of the vacuum removes volatile 
compounds from the furnace which contributes to a lower rate of wood 
mass loss compared to ThermoWood® [6]. The reader can refer to 
Esteves, Sandberg et al. and Hill et al. to obtain more information about 
the thermal modification processes of wood [1,7,8].

Colorimetric analysis has been explored as a potential indicator to 
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detect the thermal modification process of wood [9]. The inherent 
complexity of wood, arising from a great number of influencing 
anatomical factors such as annual ring width, sap- heartwood, reaction 
wood, significantly impacts the material’s color properties, thereby 
posing a challenge for accurate detection. Therefore, it can be claimed 
that it is almost impossible to identify various types of thermally 
modified wood products based only on their visual features, such as 
color and texture. For this reason, profiteering and fraud may occur in 
the trade. Some identification techniques like olfactory machine may be 
helpful to quickly and accurately identify these types of modified wood 
products [10]. Machine learning (ML) approach as a subset of artificial 
intelligence (AI) was also recently used by Liu et al. (2024) to predict the 
stiffness and hardness of wood after thermal modification [11].

Thermal modification induces substantial chemical alteration in 
wood, including deacetylation and depolymerization of hemicelluloses, 
hydrolysis and partial depolymerization of cellulose, and degradation 
and condensation of lignin [1]. These chemical changes lead to the 
emission of various volatile organic compounds (VOCs) such as ter-
penes, phenols, aldehydes, and carboxylic acids [12]. Olfactory machine 
or electronic nose (e-nose) system is a new analytical technique that can 
recognize the odor profile of various materials [13–16]. This system is 
based on a metal oxide semiconductor multi-sensor in order to create a 
fast, sensitive and reliable method for classifying different scents. By 
simulating the human sense of smell, the olfactory machine detects 
complex odors using an array of chemical sensors [16]. When odor 
molecules hit the sensors, chemical or physical reactions occur between 
the molecules and the sensor surface, leading to changes in the electrical 
properties or other characteristics of the sensor. The changes are then 
converted into electrical signals [17], which indicate the concentration 
and type of chemical compounds in the odor sample [18]. Finally, the 
collected data are analyzed by signal processing algorithms, such as 
machine learning algorithms or statistical methods [19,20]. Compared 
to traditional analytical techniques such as gas chromatography (GC) 
and liquid chromatography (HPLC), the olfactory machine is portable 
and less expensive. It is also able to simultaneously assess a wide range 
of odors and determine the overall smell of a sample rather than just 
identifying individual components [10]. Also, the olfactory machine can 
identify a mixture of volatile organic samples without the need for in-
dependent identification of the volatiles [21]. Thus, olfactory machines 
are useful in industries where odor detection plays a critical role, such as 
food quality control [20].

Few studies have been conducted regarding the use of olfactory 
machines in the wood industry. Sun et al. (2018) investigated the odor 
emitted from thermally modified bamboo with an olfactory machine and 
showed that unlike other analytical tools, the electronic nose can iden-
tify a mixture of volatile organic components without the need for 
identification of individual volatiles [22]. Nikoutadbir et al. (2023) 
found that an olfactory machine equipped with six metal oxide semi-
conductor sensors is able to identify and separate Norway spruce (Picea 
abies) and Scots pine (Pinus sylvestris) woods with 100 % accuracy [23]. 
Culleré et al. (2013) showed that gas chromatography-olfactometry 
(GC-O) can be used to evaluate the odorants emitted from thermally 
modified wood, providing valuable information for identifying different 
types of wood based on their aroma profiles [24]. The main objective of 
the present study was to use an olfactory machine to detect and separate 
various types of thermally modified wood products.

2. Materials and methods

2.1. Materials

ThermoWood® (Thermo-D class), oil-heat treated wood (OHT) and 
Termovuoto® of Scots pine wood (Pinus sylvestris) modified at around 
212 ◦C for 2 hours with dimensions of 50 (length) × 50 (width) × 25 
(thickness) mm was used. Untreated wood specimens were also used for 
comparison. ThermoWood® and OHT were manufactured from Russian 

Scots pine wood, whereas Termovuoto® were produced from Turkish 
wood. OHT was produced in a pilot-scale reactor at a local private 
company (Wood Preservers of Persia©). After loading the reactor with 
sawn timber, soybean oil at ambient temperature was pumped from the 
reservoir tank into the heated reactor until the wood was completely 
submerged. The treatment was carried out in an open system under 
atmospheric conditions. ThermoWood® was produced in an industrial 
kiln belonging to MazandChoob Arya Co. based on the Thermo-D class 
through a patented process developed in Finland by the VTT Technical 
Research Centre. The ThermoWood® process uses steam as a protective 
medium during high-temperature treatment. The International Associ-
ation of Wood Anatomists (IAWA) list of microscopic features was 
employed to identify the thermally modified wood species used.

The wood specimens were equilibrated in a climate room at a rela-
tive humidity (RH) of 65 % and a temperature of 20 ◦C for two weeks 
prior to the use of olfactory machine. More than 45 days had passed 
between the time the thermally modified wood products were produced 
and the time they were used by the olfactory machine. The specimens 
were cut from the interior of the products to have more VOCs 
concentration.

2.2. Olfactory machine

The olfactory machine is designed to identify and differentiate odors 
or VOCs in a manner similar to the human sense of smell. This device 
typically consists of gas sensors that react to a variety of compounds. The 
response patterns from these sensors are analyzed using data processing 
algorithms to determine the category to which a specific sample belongs. 
In the wood industry, particularly with thermally modified woods, the 
olfactory machine can detect subtle differences in the composition of 
volatile gases that arise from variations in processing or potential fraud. 
To improve the robustness and accuracy of sensor output, a differential 
method is employed to eliminate noise or drift in the sensor responses. 
After this preprocessing step, the data is analyzed using various 
methods, ultimately leading to the evaluation of the sample.

The developed electronic nose system (E-nose) comprises a chamber 
of samples and sensors, a diaphragm pump, a power supply, a carbon 
filter, and a data acquisition board (Fig. 1). Six holes with a diameter of 
2 mm at equal intervals were made in the cap of the olfactory machine. 
The sensors’ compartment includes 6 metal oxide semiconductor (MOS) 
arrays (Hanwei Electronics Co., Ltd., Henan, China) and each one reacts 
most to a particular odor. The sensors are able to convert a chemical 
quantity into an electrical quantity which is necessary for analysis of 
VOCs. In fact, the resulting electrical response of each sensor is unique to 
a specific odor, which is called an odor fingerprint [25]. Specifications of 
the utilized sensors are demonstrated in Table 1.

A static-400 mL chamber was considered to place samples and sen-
sors in it. The electronic board of the sensors array was mounted on the 
chamber’s lid where some holes were made so that the air could be 
ventilated to clean the container. The developed system was equipped 
with two 12 V air/water diaphragm pumps to remove odor from the 
container. Two 5 V and 12 V power supplies provided the required 
electric power in the developed system, the former delivers power to the 
pumps and the latter to the sensors. Finally, controlling the pumps was 
conducted using a 12 V R12–02 relay. The data were collected in the 
laboratory at a temperature of 25 ◦C and a relative humidity of 40 %.

The response of the olfactory machine sensors is indicated by a 
change in resistance over time (Fig. 2) The measurement process is 
divided into three different steps: baseline correction (R0), measure-
ment (Rmax) and finally cleaning the chamber. Depending on the stage 
of the system, air is channeled through different circuits by means of 
valves that are controlled by a computer program [10]. Principal 
component analysis (PCA) was applied to analyze the obtained data. 
Support vector machine (SVM) and Linear discriminant analysis (LDA) 
methods were then used to determine the accuracy of samples classifi-
cation by Unscrambler X 10.4 (64-bit) software.
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PCA was used for dimensionality reduction, simplifying the dataset 
by reducing the number of features while preserving maximum variance 
and essential information. LDA as a supervised classification technique 

was used to distinguish between predefined classes based on the pro-
cessed data, facilitating the accurate classification of samples.

3. Results and discussion

The linear discriminant analysis (LDA) in Fig. 3 shows four different 
classes of data in the olfactory machine system. Each class is marked 
with a different symbol. The results showed that this method could 
completely separate the control (untreated) and different thermally- 
modified woods. It also can be clearly seen that the four classes are 
well separated from each other, and only two classes, ThermoWood® 
and Termovuoto®, had some overlap. The ellipses around each cluster 
indicate the scatter of the data in each class. The figure revealed the 
effectiveness of LDA in separating and classifying the olfactory machine 
data.

As can be seen in Fig. 4, the olfactory machine caused a striking 
difference between the thermally modified wood products and the 
control (untreated) wood. There were also clear and distinctive differ-
ences among the thermally modified wood products. The score plot is 

Fig. 1. Schematic view of the electronic nose system (E-nose), 1. Air filters 2. Carbon filters 3. Pump 4. Control valves 5.MOS sensor 6. Sensors’ chamber and wood 
sample, 7. Arduino board, 8. Computer.

Table 1 
The specifications of the sensors utilized in the olfactory machine.

Sensor Main application detection range 
(ppm)

MQ− 3-S1 alcohol 0.05–10
MQ− 135-S2 Air quality (ammonia, NOX, alcohol, benzene, 

smoke, carbon dioxide)
Alcohol 10–300 
Benzene 
10–1000

MQ− 138-S3 Volatile organic compounds (aldehydes, 
alcohols, ketones and aromatic compounds)

5–500

TGS− 2602- 
S4

Air pollutants (VOCs and aromatic gases) 1–30

TGS− 2610- 
S5

Propane and butane 1–25

TGS− 2620- 
S6

Alcohol, organic gases 50–5000

Fig. 2. Typical response of electronic nose sensors when analyzing wood samples.
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characterized by two components: the first principal component (PC-1) 
accounts for 90 %, and the second principal component (PC-2) accounts 
for 7 %, explaining 97 % of the total data variance. These primary 
components (PC-1 and PC-2) capture the highest variance in the original 
dataset. In PCA analysis accompanied by a score plot, additional charts, 
such as a correlation loading plot, can also be generated [10]. The data 
from 4 categories are well separated from each other, while the data 
from 2 categories overlap. Nikoutadbir et al. (2024) found that the ol-
factory system and principal component analysis (PCA) effectively 
differentiated between two conifer species [23]. Lorenzo et al. (2024) 
also identified four types of wood products: Kamagong, Agoho, Acacia, 
and Sampalok, using YOLOv8 and Raspberry Pi 4B with an accuracy of 
72.5 % [25]. In this study, the olfactory machine was able to accurately 
differentiate four types of thermally modified wood from untreated 
wood with 100 % accuracy.

Softwoods and hardwoods exhibit different VOC emission profiles. 
Softwoods primarily emit volatile terpenes, while hardwoods emit 
higher levels of hexanal, pentanal, and acetic acid [12,26]. Thermal 
treatment generally reduces terpene emissions in softwoods but in-
creases acetic acid and furfural emissions in both wood types [12,26]. 
Thermally modified wood emits various VOCs that contribute to its odor 
profile. The primary compounds include aldehydes (e.g., hexanal, pen-
tanal), acetic acid, furfural, and formaldehyde [27,28]. The odor profile 
changes significantly after thermal treatment due to the degradation of 
hemicelluloses and other wood components [12,26–28]. Electronic 
noses (e-noses) equipped with metal oxide sensors can effectively 
distinguish between different types of thermally modified wood based 

on their odor profiles. For instance, the PEN 3.5 e-nose was able to 
differentiate between untreated and thermally modified bamboo by 
detecting changes in terpenes, aromatic compounds, methane, and al-
cohols [22]. Similarly, an olfactory machine with six metal oxide 
semiconductors successfully identified specific odor profiles of Picea 
abies and Pinus sylvestris [23]. MOS sensors can detect and analyze the 
VOCs emitted during the thermal treatment of wood, which vary 
depending on the treatment method [10,23,29].

The correlation loading plot illustrates the strength of the correlation 
between the sensors and each of the primary components. In this visu-
alization, a higher sensor loading on a principal component indicates a 
stronger correlation between that sensor and that component. A more 
significant loading on a principal component, which means it is closer to 
the outer ellipse, denotes a more significant influence of the sensor on 
distinguishing the classes based on that principal component compared 
to other olfactory sensors (Fig. 5). By representing the correlation 
loading of the sensors along the first principal component axis in this 
diagram, it can be observed that all sensors demonstrate a strong cor-
relation with the first principal component, leading to the conclusion 
that the control wood significantly influences all sensors. Conversely, 
using various methods, the modified wood displayed the least influence 
on all sensors.

GC-O is used to identify and characterize odor-active compounds in 
wood. This technique involves the detection of VOCs and their corre-
sponding odors, providing a detailed profile of the emitted substances 
[30,31]. It can identify key odorants and their intensities, which change 
significantly after thermal treatment [30]. Both e-nose and olfactometry 

Fig. 3. The score plots for linear discriminant analysis (LDA) results from control and different thermally-modified woods; TMW: ThermoWood®, OHT: oil-heat 
treated wood and TMV: Termovuoto®.

Fig. 4. Score plot principal component analysis (PCA) in the diagnosis of control and different thermally-modified woods; TMW: ThermoWood®, OHT: oil-heat 
treated wood and TMV: Termovuoto®.
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machines are valuable for identifying and classifying thermally modified 
wood. E-noses provide rapid and non-destructive analysis, making them 
suitable for real-time monitoring and quality control [22,32]. Olfac-
tometry, combined with GC-MS, offers detailed chemical analysis and 
sensory evaluation, which is essential for understanding the impact of 
thermal treatment on wood odor [30,31].

4. Conclusion

Results obtained with the olfactory machine indicated that the 
amount of odor and VOCs in the various thermally modified wood 
products was different depending on the modification method. The 
highest amount of VOCs observed in the oil-heat treated wood may be 
due to stronger odors emitted by the chemical compounds of the oil. On 
the other hand, modification of wood in a steam environment (Ther-
moWood®) and especially under vacuum (Termovuoto®) usually leads 
to less odor because some VOCs are released during the modification 
process. Overall, our findings revealed that various thermally modified 
woods can be accurately detected and differentiated from one another, 
particularly in relation to control wood by using the olfactory machine 
equipped with different MOS sensors.
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